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Krit1 Missense Mutations Lead to Splicing Errors in Cerebral Cavernous
Malformation
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At least 40% of families affected with cerebral cavernous malformation have a mutation in Krit1. We previously
identified two point mutations in Krit1 leading to changes in amino acids (D137G and Q210E) in two different
families. Further RNA analysis reveals that both point mutations actually activate cryptic splice-donor sites, causing
aberrant splicing and leading to a frameshift and protein truncation. To date, no simple missense mutations have
been detected in Krit1.

Cerebral cavernous malformation (CCM [MIM
116860]) is a common autosomal disorder, characterized
by abnormally enlarged capillary cavities in the brain
without intervening normal parenchyma (Russell and
Rubenstein 1989). They occur as single or multiple mal-
formations that lead to focal neurologic signs, hemor-
rhagic strokes, or seizures. CCMs are found in 0.1%–
0.5% of the population and represent 10%–20% of ce-
rebral vascular lesions (Rigamonti et al. 1988). Three
genetic loci have been defined: CCM1 on chromosome
7q21-q22 (Dubovsky et al. 1995; Günel et al. 1995;
Marchuk et al. 1995), CCM2 on 7p13-p15, and CCM3
on 3q25.2-q27 (Craig et al. 1998). To date, only one
gene has been identified: Krit1, for CCM1 (Laberge-le
Couteulx et al. 1999; Sahoo et al. 1999), which is re-
sponsible for �40% of CCM cases. The Krit1 protein
has 736 amino acids (Zhang et al. 2000; Eerola et al.
2001; Sahoo et al. 2001) and contains three ankyrin
repeats, one FERM (Band 4.1, ezrin, radixin, moesin)
domain, and one NPXY (Asn-Pro-X-Tyr) motif. It has
been recently demonstrated that Krit1 shows a strong
interaction with the integrin cytoplasmic domain–as-
sociated protein 1 (icap1a), a protein involved with
b1-dependent angiogenesis, through its NPXY motif
(Zhang et al. 2001).

All Krit1 mutations, except two point mutations pre-
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dicted to lead to an amino-acid change in two different
families (D137G in family IFCAS-41, and Q201E in
family IFCAS-28) (Davenport et al. 2001; Verlaan et al.
2002), lead to a truncated and presumably inactive pro-
tein. Both families are part of the International Famil-
ial Cavernous Angioma Study (IFCAS), which was ap-
proved by the Committee for the Protection of Human
Subjects at Dartmouth College. Because of the preva-
lence of deleterious mutations reported in the Krit1 gene,
we further investigated these two missense mutations,
for effects on splicing.

Total RNA was extracted from cultured lymphocytes
immortalized with the Epstein-Barr virus, for each mem-
ber of the families, using a RNeasy mini kit (QIAGEN).
A cDNA library was synthesized by RT-PCR, using hex-
anucleotides (pdN6). The cDNA sequences encompass-
ing the mutations were PCR amplified by use of exonic
primers and were electrophoresed on 2% agarose gel.

The affected members of IFCAS-41 (fig. 1A) are het-
erozygous for an ArG substitution (fig. 1B) in exon 7
at the nucleotide position 410 of the coding sequence.
The migration pattern of the cDNA (fig. 1C) shows that
affected individuals have two different-sized alleles,
whereas the unaffected individual is homozygous for the
larger allele. This result suggests that the substitution
may lead to truncation of the transcript. Sequencing of
the different cDNA alleles shows that alternative splicing
is occurring in the mutated allele (fig. 1D). The ArG
shift creates an alternative splice site that, when used,
results in premature splicing of exon 7 and in splicing
of exon 8 at the correct position but in an incorrect
reading frame. This would result in a frameshift event,
leading to a truncated protein of 138 amino acids that



Figure 1 A, Pedigree of IFCAS-41. The blackened symbols denote affected individuals, and the unblackened square denotes an individual
not known to be affected. Asterisks denote mutations, and the small unblackened circle denotes an absence of mutation. B, Genomic DNA sequences
of unaffected (1) and affected (2) individuals. The affected individual carries an ArG substitution at nucleotide position 410 of the coding sequence.
C, cDNA migration pattern of the normal (a) and mutated (b) alleles, for each member of the IFCAS family. D, cDNA sequences of the normal
and mutated alleles. The mutated allele causes cryptic splicing, as is illustrated in the diagram.

Figure 2 A, Pedigree of IFCAS-28. Definitions of symbols are the same as in figure 1. B, Genomic DNA sequences of a normal (3) and
affected (1) individuals. The affected individual carries a CrG substitution at nucleotide position 601 of the coding sequence. C, cDNA migration
pattern of the normal (a) and mutated (b) alleles, for each member of the IFCAS family. D, cDNA sequences of the normal and mutated alleles.
The mutated allele causes cryptic splicing, as is illustrated in the diagram.
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Figure 3 Splice-donor site consensus sequence. The ArG sub-
stitution in IFCAS-41 changed the first nucleotide of the intron,
whereas the CrG substitution in IFCAS-28 changed the third nucle-
otide of the intron.

has 2 novel amino acids and contains no structural do-
mains of Krit1.

The affected members of IFCAS-28 (fig. 2A) are het-
erozygous for a CrG substitution (fig. 2B) in exon 8 at
nucleotide position 601 of the coding sequence. Similar
to IFCAS-41, the migration pattern of the cDNA (fig.
2C) of IFCAS-28 shows that affected individuals have
two different-sized alleles, whereas the unaffected indi-
vidual is homozygous for the larger allele. This result
suggests that the substitution may truncate the tran-
script. Sequencing of the different cDNA alleles shows
that alternative splicing is occurring in the mutated allele
(fig. 2D). The CrG shift creates an alternative splice site
that, when used, results in premature splicing of exon 8
and in splicing of exon 9 at the correct position but in
an incorrect reading frame. This results in a frameshift,
which is predicted to lead to a truncated protein of 201
amino acids that has a novel amino acid and contains
only the NPXY motif.

The fact that the RT-PCR products from the normal
and mutant alleles (“a” and “b,” respectively, in figs.
1C and 2C) are of similar intensity suggests that most
of the mutant allele is alternatively spliced. In the present
study, we present two examples of point mutations in
the coding sequence that activate a cryptic splice-donor
site motif (fig. 3) that is used preferentially over the
downstream authentic splice site.

Thus, all Krit1 mutations associated with CCM that
have been published to date are predicted to result in a
truncated protein. This observation suggests that Krit1
protein function needs to be severely impaired for path-
ogenesis and that no single amino acid change results in
a loss of function sufficient to cause CCM. In addition,
our findings stress the importance of examining all point
mutations, including silent ones, to determine whether
they activate a cryptic splice-donor site motif.
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